Уфимский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Уфимск. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Уфимский математический журнал, 2018, том 10, выпуск 3, страницы 121–134 (Mi ufa434)  

On Khabibullin's conjecture about pair of integral inequalities

A. Bërdëllima

Institute for numerical and applied mathematics, University of Göttingen, 37083 Göttingen, Germany
Список литературы:
Аннотация: Khabibullin's conjecture is a statement about a pair of integral inequalities, where one inequality implies the other. They depend on two parameters $n\geqslant 2$, $n\in \mathbb{N}$, and $\alpha\in\mathbb{R}_+$. These inequalities were originally introduced by Khabibullin [6] in his survey regarding Paley problem in $\mathbb{C}_n$ and related topics about meromorphic functions. It is possible to express the inequalities in three equivalent forms. The first statement is in terms of logarithmically convex functions, the second statement is in terms of increasing functions, and the third statement is in terms of non-negative functions. In this paper we work solely with the second variant of the hypothesis. It is well established that the conjecture is true whenever $0\leqslant \alpha\leqslant 1/2$ for all $n$. Several proofs exist in the literature among which one is given by the author [2] and it relates the integral inequalities with the general theory of Laplace transform. But it was not known if the statement was true when $\alpha>1/2$ until Sharipov [8] showed that the conjecture fails when $\alpha=2$, $n=2$. However the question of whether this conjecture holds for at least some $n\geqslant 2$ and $\alpha>1/2$ remained an open problem. In this paper we aim to solve this question. Motivated by Sharipov's approach, we develop a method of constructing a counterexample for the more general case $n\geqslant 2$ and $\alpha>1/2$. By an explicit counterexample we show that Khabibullin's conjecture does not hold in general.
Ключевые слова: Khabibullin's conjecture, Khabibullin's theorem, Khabibullin's constants, integral inequalities, counterexample, plurisubharmonic function, sharp estimate.
Поступила в редакцию: 24.06.2017
Англоязычная версия:
Ufa Mathematical Journal, 2018, Volume 10, Issue 3, Pages 117–130
DOI: https://doi.org/10.13108/2018-10-3-117
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.5
Язык публикации: английский
Образец цитирования: A. Bërdëllima, “On Khabibullin's conjecture about pair of integral inequalities”, Уфимск. матем. журн., 10:3 (2018), 121–134; Ufa Math. J., 10:3 (2018), 117–130
Цитирование в формате AMSBIB
\RBibitem{Bеr18}
\by A.~B\"erd\"ellima
\paper On Khabibullin's conjecture about pair of integral inequalities
\jour Уфимск. матем. журн.
\yr 2018
\vol 10
\issue 3
\pages 121--134
\mathnet{http://mi.mathnet.ru/ufa434}
\transl
\jour Ufa Math. J.
\yr 2018
\vol 10
\issue 3
\pages 117--130
\crossref{https://doi.org/10.13108/2018-10-3-117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000457365400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057023392}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ufa434
  • https://www.mathnet.ru/rus/ufa/v10/i3/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Статистика просмотров:
    Страница аннотации:190
    PDF русской версии:76
    PDF английской версии:16
    Список литературы:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024