|
Уфимский математический журнал, 2017, том 9, выпуск 3, страницы 158–164
(Mi ufa383)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
On integrability of a discrete analogue of Kaup–Kupershmidt equation
[Об интегрируемости дискретного аналога уравнения Каупа–Купершмидта]
R. N. Garifullin, R. I. Yamilov Institute of Mathematics, Ufa Scientific Center, RAS,
Chenryshevsky str. 112,
450008, Ufa, Russia
Аннотация:
We study a new example of the equation obtained as a result of a recent generalized symmetry classification of
differential-difference equations defined on five points of an one-dimensional lattice. We establish that
in the continuous limit this new equation turns into the well-known Kaup–Kupershmidt equation. We also prove its integrability by constructing an $L-A$ pair and conservation laws. Moreover, we present a possibly
new scheme for constructing conservation laws from $L-A$ pairs.
We show that this new differential-difference equation is similar by its properties to the discrete Sawada–Kotera
equation studied earlier. Their continuous limits, namely the Kaup–Kupershmidt and Sawada–Kotera equations, play the main
role in the classification of fifth order evolutionary equations made by V. G. Drinfel'd, S. I. Svinolupov and V. V. Sokolov.
Ключевые слова:
differential-difference equation, integrability, Lax pair, conservation law.
Поступила в редакцию: 12.12.2016
Образец цитирования:
R. N. Garifullin, R. I. Yamilov, “On integrability of a discrete analogue of Kaup–Kupershmidt equation”, Уфимск. матем. журн., 9:3 (2017), 158–164; Ufa Math. J., 9:3 (2017), 158–164
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa383 https://www.mathnet.ru/rus/ufa/v9/i3/p158
|
Статистика просмотров: |
Страница аннотации: | 327 | PDF русской версии: | 101 | PDF английской версии: | 22 | Список литературы: | 48 |
|