Уфимский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Уфимск. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Уфимский математический журнал, 2014, том 6, выпуск 3, страницы 35–71 (Mi ufa252)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Сингулярные интегральные операторы на многообразии с отмеченным подмногообразием

Ю. А. Кордюковa, В. А. Павленкоb

a Институт математики c ВЦ УНЦ РАН, ул. Чернышевского, 112, 450008, г. Уфа, Россия
b ФГБОУ ВПО Башкирский государственный аграрный университет, ул. 50-летия Октября, 34, 450080, г. Уфа, Россия
Список литературы:
Аннотация: Пусть $X$ – компактное многообразие без края и $X^0$ – его гладкое подмногообразие коразмерности один. В работе вводятся классы интегральных операторов на $X$ c ядрами $K_A(x,y)$, являющимися гладкими функциями при $x\notin X^0$ и $y\notin X^0$ и допускающими асимптотическое разложение определенного вида, если $x$ или $y$ приближается к $X^0$. Для операторов из этих классов доказаны теоремы о действии в пространствах конормальных функций и теоремы о композиции. Показано, что функционал следа можно продолжить до функционала регуляризованного следа $\operatorname{r-Tr}$, определенного на некоторой алгебре $\mathcal K(X,X^0)$ сингулярных интегральных операторов, описанных выше. Доказана формула для регуляризованного следа коммутатора операторов из данного класса в терминах ассоциированных операторов на $X^0$. Доказательства основаны на теоремах о поднятии и опускании конормальных функций при отображениях многообразий с отмеченными подмногообразиями коразмерности один.
Ключевые слова: многообразия, сингулярные интегральные операторы, конормальные функции, регуляризованный след, поднятие, опускание.
Поступила в редакцию: 13.03.2014
Англоязычная версия:
Ufa Mathematical Journal, 2014, Volume 6, Issue 3, Pages 35–68
DOI: https://doi.org/10.13108/2014-6-3-35
Реферативные базы данных:
Тип публикации: Статья
УДК: 515.168+517.983
MSC: 47G10, 58J40,47C05
Образец цитирования: Ю. А. Кордюков, В. А. Павленко, “Сингулярные интегральные операторы на многообразии с отмеченным подмногообразием”, Уфимск. матем. журн., 6:3 (2014), 35–71; Ufa Math. J., 6:3 (2014), 35–68
Цитирование в формате AMSBIB
\RBibitem{KorPav14}
\by Ю.~А.~Кордюков, В.~А.~Павленко
\paper Сингулярные интегральные операторы на многообразии с~отмеченным подмногообразием
\jour Уфимск. матем. журн.
\yr 2014
\vol 6
\issue 3
\pages 35--71
\mathnet{http://mi.mathnet.ru/ufa252}
\elib{https://elibrary.ru/item.asp?id=22370777}
\transl
\jour Ufa Math. J.
\yr 2014
\vol 6
\issue 3
\pages 35--68
\crossref{https://doi.org/10.13108/2014-6-3-35}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928194358}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ufa252
  • https://www.mathnet.ru/rus/ufa/v6/i3/p35
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Статистика просмотров:
    Страница аннотации:267
    PDF русской версии:95
    PDF английской версии:11
    Список литературы:48
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024