Управление большими системами
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УБС:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Управление большими системами, 2019, выпуск 81, страницы 147–167
DOI: https://doi.org/10.25728/ubs.2019.81.6
(Mi ubs1020)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Управление техническими системами и технологическими процессами

Расчет эффекта от перевода добывающей нефтяной скважины в нагнетательный фонд в рамках управления разработкой нефтяным месторождением

Д. В. Курганов

Самарский государственный технический университет, Самара
Список литературы:
Аннотация: Применение алгоритмов машинного обучения (МО) является перспективным направлением для принятия решений при управлении таким сложным процессом, как разработка нефтяного месторождения. Существенным условием применения этих алгоритмов является наличие обширной цифровой базы с представительными результатами, позволяющей провести обучение модели. В работе рассмотрено применение одного из методов МО – опорных векторов – для принятия решения о переводе скважины из добывающего в нагнетательный фонд и оценен эффект подобного перевода с точки зрения прироста добычи жидкости. Расчеты выполнены для крупного месторождения в Западной Сибири. В алгоритме также существенным образом применяется диаграмма Вороного, хорошо зарекомендовавшая себя как приближение к зоне дренируемых запасов скважины. Методика принятия решения позволяет комплексировать такие параметры, как параметры проведенных гидроразрывов пласта, начальную продуктивность, текущее энергетическое состояние потенциального участка работ, не прибегая к фильтрационному моделированию, которое в данном случае не позволяет уточнить или подтвердить параметры пластовой системы. Используется две модели: первая модель обучается на фильтрационно-емкостных параметрах участка и определяется суммарный прирост добычи для участка, с помощью второй модели рассчитывается распределение приростов по конкретным скважинам участка. Вторая модель существенно использует аппарат имитационного гидропрослушивания, позволяющий без остановок и потерь на скважинах определять связность коллектора и линии тока. Метод будет особенно перспективен в осложненных коллекторах, например, в двухпоровой среде, где связь между пластовыми параметрами и промысловыми показателями разработки традиционными методами установить затруднительно, а также при наличии техногенных трещин, в частности, от гидроразрыва пластов.
Ключевые слова: нейросетевой анализ, алгоритм Левенберга–Марквардта, анализ компонентного состава, природный газ.
Поступила в редакцию: 19 мая 2019 г.
Опубликована: 30 сентября 2019 г.
Реферативные базы данных:
Тип публикации: Статья
УДК: 681.518:622.276
ББК: 33.361
Образец цитирования: Д. В. Курганов, “Расчет эффекта от перевода добывающей нефтяной скважины в нагнетательный фонд в рамках управления разработкой нефтяным месторождением”, УБС, 81 (2019), 147–167
Цитирование в формате AMSBIB
\RBibitem{Kou19}
\by Д.~В.~Курганов
\paper Расчет эффекта от перевода добывающей нефтяной скважины в нагнетательный фонд в рамках управления разработкой нефтяным месторождением
\jour УБС
\yr 2019
\vol 81
\pages 147--167
\mathnet{http://mi.mathnet.ru/ubs1020}
\crossref{https://doi.org/10.25728/ubs.2019.81.6}
\elib{https://elibrary.ru/item.asp?id=41216942}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ubs1020
  • https://www.mathnet.ru/rus/ubs/v81/p147
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Управление большими системами
    Статистика просмотров:
    Страница аннотации:282
    PDF полного текста:397
    Список литературы:30
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024