Теория вероятностей и ее применения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Теория вероятн. и ее примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теория вероятностей и ее применения, 1999, том 44, выпуск 1, страницы 87–100
DOI: https://doi.org/10.4213/tvp599
(Mi tvp599)
 

Эта публикация цитируется в 17 научных статьях (всего в 17 статьях)

On martingale measures for stochastic processes with independent increments

P. Grandits

Institut für Statistik, Universität Wien, Austria
Аннотация: В статье рассматривается специальный семимартингал $X$ с независимыми приращениями и доказывается существование и эквивалентность локальной мартингальной меры $P^H$ для $X$, которая минимизирует процесс Хеллингера, в предположении, что эквивалентная локально мартингальная мера вообще существует. Это сделано при условии полунепрерывности слева и ограниченности скачков процесса $X$. Также исследуется связь между хорошо известной минимальной мартингальной мерой $P^{\mathrm{min}}$ и $P^H$. Показано, что в некотором смысле $P^{\mathrm{min}}$ есть аппроксимация для $P^H$.
Ключевые слова: процессы с независимыми приращениями, эквивалентная локальная мартингальная мера, минимальная мартингальная мера, процесс Хеллингера.
Поступила в редакцию: 15.09.1998
Англоязычная версия:
Theory of Probability and its Applications, 2000, Volume 44, Issue 1, Pages 39–50
DOI: https://doi.org/10.1137/S0040585X97977355
Реферативные базы данных:
Язык публикации: английский
Образец цитирования: P. Grandits, “On martingale measures for stochastic processes with independent increments”, Теория вероятн. и ее примен., 44:1 (1999), 87–100; Theory Probab. Appl., 44:1 (2000), 39–50
Цитирование в формате AMSBIB
\RBibitem{Gra99}
\by P.~Grandits
\paper On martingale measures for stochastic processes with independent increments
\jour Теория вероятн. и ее примен.
\yr 1999
\vol 44
\issue 1
\pages 87--100
\mathnet{http://mi.mathnet.ru/tvp599}
\crossref{https://doi.org/10.4213/tvp599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1751190}
\zmath{https://zbmath.org/?q=an:0959.60033}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 1
\pages 39--50
\crossref{https://doi.org/10.1137/S0040585X97977355}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087555000004}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tvp599
  • https://doi.org/10.4213/tvp599
  • https://www.mathnet.ru/rus/tvp/v44/i1/p87
  • Эта публикация цитируется в следующих 17 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Статистика просмотров:
    Страница аннотации:369
    PDF полного текста:264
    Первая страница:10
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024