Аннотация:
Рассматривается однородный марковский процесс с непрерывным временем на фазовом пространстве $\mathbf{Z}_+=\{0,1,2,\dots\}$, который мы интерпретируем как движение частицы. Частица может переходить только в соседние точки $\mathbf{Z}_+$, т.е. при каждой смене положения частицы ее координата изменяется на единицу. Процесс снабжен механизмом ветвления. Источники ветвления могут находиться в каждой точке $\mathbf{Z}_+$. В момент ветвления новые частицы появляются в точке ветвления и дальше эволюционируют независимо друг от друга (и от остальных частиц) по тем же законам, что и начальная частица. Такому ветвящемуся марковскому процессу соответствует матрица Якоби. В терминах ортогональных многочленов, отвечающих этой матрице, получены формулы для среднего числа частиц в произвольной фиксированной точке $\mathbf{Z}_+$ в момент времени $t>0$. Результаты применены к некоторым конкретным моделям, получено точное значение для среднего числа частиц в терминах специальных функций и найдено его асимптотическое поведение при больших временах.
Работа поддержана Санкт-Петербургским международным математическим институтом имени Леонарда Эйлера, грантовое соглашение № 075-15-2022-289 от 06.04.2022.
Поступила в редакцию: 05.03.2023 Исправленный вариант: 24.05.2023
Образец цитирования:
А. В. Люлинцев, “Марковские ветвящиеся случайные блуждания по $\mathbf{Z}_+$. Подход с использованием ортогональных многочленов. I”, Теория вероятн. и ее примен., 69:1 (2024), 91–111; Theory Probab. Appl., 69:1 (2024), 71–87