Аннотация:
Рассматривается степенной ряд в фиксированной точке $\rho \in (0.5,1)$, где случайные коэффициенты принимают значения $0$, $1$ и образуют стационарный, эргодический и апериодический процесс. Мера Эрдёша — это закон распределения такого ряда. Задача об абсолютной непрерывности меры Эрдёша сводится к вопросу, когда соответствующая скрытая марковская цепь является марковской цепью Перри. Для золотого сечения и 1-марковских цепей мы получаем необходимые и достаточные условия абсолютной непрерывности меры Эрдёша и, используя марковские цепи Блекуэлла, даем новое доказательство того, что необходимые условия, найденные ранее (Теория вероятн. и ее примен., 51:1 (2006), 5–21), являются достаточными. Для числа трибоначчи и 1-марковских цепей получено новое доказательство теоремы о сингулярности меры Эрдёша. Для числа трибоначчи и 2-марковских цепей найдено только два случая абсолютной непрерывности.
Образец цитирования:
В. Л. Куликов, Е. Ф. Олехова, В. И. Оселедец, “Об абсолютной непрерывности меры Эрдёша для золотого сечения, числа трибоначчи и марковских цепей второго порядка”, Теория вероятн. и ее примен., 69:2 (2024), 335–353; Theory Probab. Appl., 69:2 (2024), 265–280
\RBibitem{KulOleOse24}
\by В.~Л.~Куликов, Е.~Ф.~Олехова, В.~И.~Оселедец
\paper Об абсолютной непрерывности меры Эрдёша для золотого сечения, числа трибоначчи и марковских цепей второго порядка
\jour Теория вероятн. и ее примен.
\yr 2024
\vol 69
\issue 2
\pages 335--353
\mathnet{http://mi.mathnet.ru/tvp5628}
\crossref{https://doi.org/10.4213/tvp5628}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 2
\pages 265--280
\crossref{https://doi.org/10.1137/S0040585X97T991908}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85202547315}