Теория вероятностей и ее применения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Теория вероятн. и ее примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теория вероятностей и ее применения, 2024, том 69, выпуск 1, страницы 148–160
DOI: https://doi.org/10.4213/tvp5592
(Mi tvp5592)
 

Предельное поведение порядковых статистик на длинах циклов случайных $A$-подстановок

А. Л. Якымив

Математический институт им. В. А. Стеклова Российской академии наук, Москва, Россия
Список литературы:
Аннотация: Рассматривается случайная подстановка $\tau_n$, равномерно распределенная на множестве всех подстановок степени $n$, длины циклов которых принадлежат фиксированному множеству $A$ (так называемых $A$-подстановок). Пусть $\zeta_n$ — общее число циклов и $\eta_n(1)\leqslant\eta_n(2)\leqslant\dots\leqslant\eta_n(\zeta_n)$ — вариационный ряд длин циклов подстановки $\tau_n$. Рассматривается некоторый класс множеств $A$, обладающих положительной плотностью в множестве натуральных чисел. В настоящей заметке мы изучаем асимптотическое поведение $\eta_n(m)$ с номерами $m$, находящимися в левой и средней части этого ряда для определенного класса множеств положительной асимптотической плотности. Предельная теорема для крайних правых членов этого ряда была доказана автором ранее. Задача изучения предельных свойств последовательности $\eta_n(m)$ восходит к работе Л. А. Шеппа и С. П. Ллойда (1966 г.), в которой рассматривалась ситуация, когда $A=\mathbf N$.
Ключевые слова: случайная $A$-подстановка, вариационный ряд длин циклов подстановки, порядковые статистики.
Финансовая поддержка Номер гранта
Российский научный фонд 19-11-00111-П
Исследование выполнено за счет гранта Российского научного фонда № 19-11-00111-П, https://rscf.ru/project/19-11-00111/.
Поступила в редакцию: 20.07.2022
Исправленный вариант: 26.10.2022
Англоязычная версия:
Theory of Probability and its Applications, 2024, Volume 69, Issue 1, Pages 117–126
DOI: https://doi.org/10.1137/S0040585X97T991787
Реферативные базы данных:
Тип публикации: Статья
Образец цитирования: А. Л. Якымив, “Предельное поведение порядковых статистик на длинах циклов случайных $A$-подстановок”, Теория вероятн. и ее примен., 69:1 (2024), 148–160; Theory Probab. Appl., 69:1 (2024), 117–126
Цитирование в формате AMSBIB
\RBibitem{Yak24}
\by А.~Л.~Якымив
\paper Предельное поведение порядковых статистик на длинах циклов случайных $A$-подстановок
\jour Теория вероятн. и ее примен.
\yr 2024
\vol 69
\issue 1
\pages 148--160
\mathnet{http://mi.mathnet.ru/tvp5592}
\crossref{https://doi.org/10.4213/tvp5592}
\transl
\jour Theory Probab. Appl.
\yr 2024
\vol 69
\issue 1
\pages 117--126
\crossref{https://doi.org/10.1137/S0040585X97T991787}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85194155723}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tvp5592
  • https://doi.org/10.4213/tvp5592
  • https://www.mathnet.ru/rus/tvp/v69/i1/p148
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Статистика просмотров:
    Страница аннотации:135
    PDF полного текста:7
    HTML русской версии:16
    Список литературы:26
    Первая страница:8
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024