|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Предельные теоремы для индикаторов рекордов в пороговых $F^{\alpha}$-схемах
П. Хе, К. А. Боровков School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
Аннотация:
В $F^\alpha$-схеме Невзорова рассматривается последовательность независимых случайных величин, чьи функции распределения суть степени одной общей функции распределения. Ключевое свойство $F^\alpha$-схемы состоит в том, что для нее индикаторы рекордов независимы. Это позволяет получить ряд важных предельных теорем для числа рекордов в такой последовательности до момента времени $n\to\infty$. Мы распространили эти теоремы на гораздо более широкий класс последовательностей случайных величин в "пороговых $F^\alpha$-схемах", когда функции распределения величин близки к степеням общей $F$ лишь в их “правых хвостах”, выше некоторых возрастающих неслучайных пороговых значений. Характеризация скорости роста экстремального процесса, которую мы получили для проверки условий нашей главной теоремы, представляет самостоятельный интерес. Мы также установили асимптотическую попарную независимость индикаторов рекордов в специальном случае $F^\alpha$-схем.
Ключевые слова:
рекорды, максимумы случайных величин, экстремальный процесс, скорость роста, $F^\alpha$-схема, почти наверное поведение.
Поступила в редакцию: 11.03.2019 Исправленный вариант: 30.06.2019 Принята в печать: 11.07.2019
Образец цитирования:
П. Хе, К. А. Боровков, “Предельные теоремы для индикаторов рекордов в пороговых $F^{\alpha}$-схемах”, Теория вероятн. и ее примен., 65:3 (2020), 521–537; Theory Probab. Appl., 65:3 (2020), 405–417
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tvp5299https://doi.org/10.4213/tvp5299 https://www.mathnet.ru/rus/tvp/v65/i3/p521
|
Статистика просмотров: |
Страница аннотации: | 213 | PDF полного текста: | 44 | Список литературы: | 41 | Первая страница: | 12 |
|