|
Теория вероятностей и ее применения, 1994, том 39, выпуск 3, страницы 635–640
(Mi tvp3839)
|
|
|
|
Эта публикация цитируется в 38 научных статьях (всего в 38 статьях)
Краткие сообщения
Отсутствие арбитража и эквивалентные мартингальные меры: новое доказательство теоремы Харрисона–Плиски
Ю. М. Кабановa, Д. О. Крамковb a Центральный экономико-математический институт РАН, Москва, Россия
b Математический институт им. В. А. Стеклова РАН, Москва, Россия
Аннотация:
Приводится новое доказательство ключевого результата к теореме, утверждающей, что в стохастической модели рынка ценных бумаг без трения с дискретным временем отсутствие арбитражных возможностей эквивалентно существованию вероятностной меры $Q$, абсолютно непрерывной относительно основной вероятностной меры $P$ со строго положительной ограниченной плотностью, такой, что все цены акций являются мартингалами по отношению к $Q$. Доказательство элементарно в том смысле, что оно не использует теорему об измеримом выборе.
Ключевые слова:
рынок ценных бумаг, отсутствие арбитража,эквивалентная мартингальная мера.
Поступила в редакцию: 02.07.1993
Образец цитирования:
Ю. М. Кабанов, Д. О. Крамков, “Отсутствие арбитража и эквивалентные мартингальные меры: новое доказательство теоремы Харрисона–Плиски”, Теория вероятн. и ее примен., 39:3 (1994), 635–640; Theory Probab. Appl., 39:3 (1994), 523–527
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tvp3839 https://www.mathnet.ru/rus/tvp/v39/i3/p635
|
Статистика просмотров: |
Страница аннотации: | 789 | PDF полного текста: | 259 | Первая страница: | 32 |
|