|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Краткие сообщения
О марковских возмущениях группы унитарных операторов, ассоциированной со случайным процессом со стационарными приращениями
Г. Г. Амосов Московский физико-технический институт (государственный университет)
Аннотация:
В работе вводятся “марковские” коциклические возмущения группы унитарных операторов, ассоциированной со случайным процессом со стационарными приращениями, характеризующиеся свойством локализации действия возмущения на алгебру событий прошлого. Необходимость такого определения связана с тем, что при марковском возмущении группы, ассоциированной со случайным процессом с некоррелированными приращениями, для возмущенной группы также найдется случайный процесс с некоррелированными приращениями, ассоциированный с ней. С другой стороны, с возмущенной группой может быть ассоциирован некоторый “детерминированный” случайный процесс, полностью лежащий в прошлом. Построена модель марковских возмущений, описывающая все марковские коциклы с точностью до унитарной эквивалентности возмущений. С помощью введенной модели построены марковские коциклы, переводящие гауссовские меры в эквивалентные гауссовские меры.
Ключевые слова:
случайный процесс со стационарными приращениями, группа унитарных операторов, коциклическое возмущение унитарным коциклом.
Поступила в редакцию: 23.05.2002
Образец цитирования:
Г. Г. Амосов, “О марковских возмущениях группы унитарных операторов, ассоциированной со случайным процессом со стационарными приращениями”, Теория вероятн. и ее примен., 49:1 (2004), 145–155; Theory Probab. Appl., 49:1 (2005), 123–132
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tvp240https://doi.org/10.4213/tvp240 https://www.mathnet.ru/rus/tvp/v49/i1/p145
|
Статистика просмотров: |
Страница аннотации: | 495 | PDF полного текста: | 189 | Список литературы: | 83 |
|