Теория вероятностей и ее применения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Теория вероятн. и ее примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теория вероятностей и ее применения, 2005, том 50, выпуск 2, страницы 396–404
DOI: https://doi.org/10.4213/tvp118
(Mi tvp118)
 

Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)

Краткие сообщения

Some properties of generalized Pickands constants

K. Debicki

Wroclaw University
Список литературы:
Аннотация: Изучаются свойства обобщенных констант Пикандса $\mathscr{H}_{\eta}$, которые возникают в теории экстремальных значений гауссовских процессов и определяются следующим образом:
$$ \mathscr{H}_{\eta}=\lim_{T\to\infty}\frac{\mathscr{H}_{\eta}(T)}{T}, $$
где $\mathscr{H}_{\eta}(T)=\mathbf{E}\exp(\max_{t \in[0,T]}(\sqrt{2}\,\eta(t)-\mathbf{D}\eta(t)))$ и $\eta(t)$ — центрированный гауссовский процесс со стационарными приращениями.
Даны оценки скорости сходимости $\mathscr{H}_{\eta}(T)/T$ к $\mathscr{H}_\eta$ и доказано, что если $\eta_{(n)}(t)$ слабо сходится в $C([0,\infty))$ к $\eta(t)$, то при некоторых неограничительных условиях $\lim_{n\to\infty}\mathscr{H}_{\eta_{(n)}}=\mathscr{H}_{\eta}$.
В качестве применения доказывается, что функция $\Upsilon(\alpha)=\mathscr{H}_{B_{\alpha/2}}$ непрерывна на $(0,2]$, где $B_{\alpha/2}(t)$ — дробное броуновское движение с параметром Хэрста $\alpha/2$.
Ключевые слова: точная асимптотика, экстремали, дробное броуновское движение, гауссовский процесс, обобщенные константы Пикандса.
Поступила в редакцию: 20.08.2002
Англоязычная версия:
Theory of Probability and its Applications, 2006, Volume 50, Issue 2, Pages 290–298
DOI: https://doi.org/10.1137/S0040585X97981755
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: K. Debicki, “Some properties of generalized Pickands constants”, Теория вероятн. и ее примен., 50:2 (2005), 396–404; Theory Probab. Appl., 50:2 (2006), 290–298
Цитирование в формате AMSBIB
\RBibitem{Deb05}
\by K.~Debicki
\paper Some properties of generalized Pickands constants
\jour Теория вероятн. и ее примен.
\yr 2005
\vol 50
\issue 2
\pages 396--404
\mathnet{http://mi.mathnet.ru/tvp118}
\crossref{https://doi.org/10.4213/tvp118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222683}
\zmath{https://zbmath.org/?q=an:1089.60035}
\elib{https://elibrary.ru/item.asp?id=9153133}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 290--298
\crossref{https://doi.org/10.1137/S0040585X97981755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238760000009}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tvp118
  • https://doi.org/10.4213/tvp118
  • https://www.mathnet.ru/rus/tvp/v50/i2/p396
  • Эта публикация цитируется в следующих 11 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Статистика просмотров:
    Страница аннотации:407
    PDF полного текста:187
    Список литературы:70
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024