|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Квантово-механическая эквивалентность метрик центрально-симметричного гравитационного поля
М. В. Горбатенкоa, В. П. Незнамовab a Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, Саров, Нижегородская обл., Россия
b Национальный исследовательский ядерный университет "МИФИ", Москва, Россия
Аннотация:
Проведен анализ квантово-механической эквивалентности метрик центрально-симметричного незаряженного гравитационного поля. Рассмотрены статические метрики Шварцшильда в сферических и изотропных координатах, стационарные метрики Эддингтона–Финкельштейна и Пенлеви–Гуллстранда, нестационарные метрики Леметра–Финкельштейна и Крускала–Шекереса. При использовании вещественных радиальных функций уравнения Дирака и уравнения второго порядка в поле Шварцшильда область определения волновых функций ограничивается значениями $r>r_0$, где $r_0$ – радиус горизонта событий. Соответствующее ограничение существует также в других координатах для всех рассмотренных метрик. Для рассмотренных метрик уравнения второго порядка допускают существование вырожденных стационарных связанных состояний фермионов с нулевой энергией. В результате доказано, что физически значимые результаты по квантово-механическому описанию взаимодействия частиц с гравитационным полем не зависят от выбора используемого в исследовании решения для центрально-симметричного статического гравитационного поля.
Ключевые слова:
координатные преобразования, дираковский гамильтониан, уравнение второго порядка для фермионов, эффективный потенциал, вырожденное связанное состояние.
Поступило в редакцию: 09.04.2018 После доработки: 31.05.2018
Образец цитирования:
М. В. Горбатенко, В. П. Незнамов, “Квантово-механическая эквивалентность метрик центрально-симметричного гравитационного поля”, ТМФ, 198:3 (2019), 489–522; Theoret. and Math. Phys., 198:3 (2019), 425–454
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tmf9578https://doi.org/10.4213/tmf9578 https://www.mathnet.ru/rus/tmf/v198/i3/p489
|
Статистика просмотров: |
Страница аннотации: | 383 | PDF полного текста: | 84 | Список литературы: | 58 | Первая страница: | 17 |
|