Теоретическая и математическая физика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ТМФ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Теоретическая и математическая физика, 2012, том 173, номер 1, страницы 71–88
DOI: https://doi.org/10.4213/tmf6921
(Mi tmf6921)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Фрактал Фибоначчи – новый тип фрактальностифрактальности

В. В. Юдин, Е. С. Старцев

Институт физики и информационных технологий, Дальневосточный федеральный университет, Владивосток, Россия
Список литературы:
Аннотация: Предложен единый метод оценки фрактальных характеристик систем, подчиняющихся принципу скейлинга в том или ином смысле. Он основан на представлении таких систем порождающими древесными графами Бете–Кэли. Последние являются следствием формализма групповой связки инверсных полугрупп Фибоначчи–Пенроуза. Последовательно рассмотрены стандартные системы Кантора и Коха в новом методе. Доказана фрактальность самой системы Фибоначчи, которая не обладает ни отрицательным, ни положительным типами избыточности. Фрактал Фибоначчи проиллюстрирован оригинальными процедурами и в координатном представлении. В основе фрактала Фибоначчи лежит золотое разбиение и специфическая инверсность, которая органически присуща системе Фибоначчи. Данное свойство отражено в структуре генератора Фибоначчи.
Ключевые слова: фрактал Фибоначчи, фрактал Кантора, фрактал Коха, порождающие древесные графы, скейлинг, генератор Коха, генератор Кантора.
Поступило в редакцию: 02.06.2011
После доработки: 21.11.2011
Англоязычная версия:
Theoretical and Mathematical Physics, 2012, Volume 173, Issue 1, Pages 1387–1402
DOI: https://doi.org/10.1007/s11232-012-0121-7
Реферативные базы данных:
Тип публикации: Статья
Образец цитирования: В. В. Юдин, Е. С. Старцев, “Фрактал Фибоначчи – новый тип фрактальностифрактальности”, ТМФ, 173:1 (2012), 71–88; Theoret. and Math. Phys., 173:1 (2012), 1387–1402
Цитирование в формате AMSBIB
\RBibitem{YudSta12}
\by В.~В.~Юдин, Е.~С.~Старцев
\paper Фрактал Фибоначчи -- новый тип фрактальностифрактальности
\jour ТМФ
\yr 2012
\vol 173
\issue 1
\pages 71--88
\mathnet{http://mi.mathnet.ru/tmf6921}
\crossref{https://doi.org/10.4213/tmf6921}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171537}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...173.1387Y}
\elib{https://elibrary.ru/item.asp?id=20732533}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 173
\issue 1
\pages 1387--1402
\crossref{https://doi.org/10.1007/s11232-012-0121-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310831700004}
\elib{https://elibrary.ru/item.asp?id=20490772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869047688}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tmf6921
  • https://doi.org/10.4213/tmf6921
  • https://www.mathnet.ru/rus/tmf/v173/i1/p71
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Статистика просмотров:
    Страница аннотации:789
    PDF полного текста:563
    Список литературы:72
    Первая страница:45
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024