|
Теоретическая и математическая физика, 1984, том 59, номер 3, страницы 440–452
(Mi tmf5029)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Интегрирование модели $\varphi^4$ в эллиптических функциях Якоби и исследование их методом фазовой плоскости
В. Е. Гришин, В. К. Федянин
Аннотация:
Для модели $\varphi^4$ при различных соотношениях знаков констант в гамильтониане
получены решения в виде эллиптических функций Якоби.
Такие существенно-нелинейные решения, исследуемые на фазовой плоскости
в предельном случае, для параметра $E$ на сепаратрисах $S$ переходят
в кинки или солитоны. При наинизшем состоянии $E_{\min}=U(\varphi_0)$ (вакуум) решения трансформируются в конденсат вакуума (гармонические
колебания). Разложение решений вблизи вакуума соответствует
результату теории возмущений.
Поступило в редакцию: 10.08.1983
Образец цитирования:
В. Е. Гришин, В. К. Федянин, “Интегрирование модели $\varphi^4$ в эллиптических функциях Якоби и исследование их методом фазовой плоскости”, ТМФ, 59:3 (1984), 440–452; Theoret. and Math. Phys., 59:3 (1984), 609–617
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tmf5029 https://www.mathnet.ru/rus/tmf/v59/i3/p440
|
Статистика просмотров: |
Страница аннотации: | 265 | PDF полного текста: | 100 | Список литературы: | 52 | Первая страница: | 1 |
|