|
Статистика квазиэнергий квантово-механических систем для регулярного и хаотического режимов с гамильтонианами, периодически изменяющимися во времени
Ю. Л. Болотин, Ю. П. Вирченко Институт монокристаллов НАН Украины
Аннотация:
Рассматриваются квантово-механические системы с гамильтонианами, периодически
изменяющимися во времени. В предположении, что спектр оператора Флоке дискретный и расстояния между квазиэнергиями допускают статистическое описание на основе непрерывной плотности распределения, показано, что плотность индуцированного распределения вероятностей для расстояний между подходящим образом ренормированными дробными частями квазиэнергий, определенных по
$\bmod(\hbar\omega)$, скольугодно близка к экспоненциальной плотности распределения, если число уровней неограниченно возрастает. Этот результат не зависит от исходного закона распределения. Предложен альтернативный метод статистического описания дробных частей, который позволяет различать исходные статистические законы
распределения квазиэнергий для регулярного и хаотического режимов.
Поступило в редакцию: 06.06.1995
Образец цитирования:
Ю. Л. Болотин, Ю. П. Вирченко, “Статистика квазиэнергий квантово-механических систем для регулярного и хаотического режимов с гамильтонианами, периодически изменяющимися во времени”, ТМФ, 108:3 (1996), 431–447; Theoret. and Math. Phys., 108:3 (1996), 1195–1207
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tmf1201https://doi.org/10.4213/tmf1201 https://www.mathnet.ru/rus/tmf/v108/i3/p431
|
Статистика просмотров: |
Страница аннотации: | 478 | PDF полного текста: | 210 | Список литературы: | 77 | Первая страница: | 1 |
|