|
Труды Математического института имени В. А. Стеклова, 2006, том 252, страницы 224–236
(Mi tm74)
|
|
|
|
Multipolytopes and Convex Chains
Y. Nishimura Setsunan University
Аннотация:
For a simple complete multipolytope $\mathcal P$ in $\mathbb R^n$, Hattori and Masuda defined a locally constant function $\mathrm {DH}_{\mathcal P}$ on $\mathbb R^n$ minus the union of hyperplanes associated with $\mathcal P$, which agrees with the density function of an equivariant complex line bundle over a Duistermaat–Heckman measure when $\mathcal P$ arises from a moment map of a torus manifold. We improve the definition of $\mathrm {DH}_{\mathcal P}$ and construct a convex chain $\overline {\mathrm {DH}}_{\mathcal P}$ on $\mathbb R^n$. The well-definiteness of this convex chain is equivalent to the semicompleteness of the multipolytope $\mathcal P$. Generalizations of the Pukhlikov–Khovanskii formula and an Ehrhart polynomial for a simple lattice multipolytope are given as corollaries. The constructed correspondence $\{$simple semicomplete multipolytopes$\}\to \{$convex chains$\}$ is surjective but not injective. We will study its “kernel.”
Поступило в феврале 2005 г.
Образец цитирования:
Y. Nishimura, “Multipolytopes and Convex Chains”, Геометрическая топология, дискретная геометрия и теория множеств, Сборник статей, Труды МИАН, 252, Наука, МАИК «Наука/Интерпериодика», М., 2006, 224–236; Proc. Steklov Inst. Math., 252 (2006), 212–224
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm74 https://www.mathnet.ru/rus/tm/v252/p224
|
|