|
Труды Математического института имени В. А. Стеклова, 1999, том 225, страницы 160–167
(Mi tm718)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds
P. M. Gruber Vienna University of Technology
Аннотация:
First a stability version of a theorem of L. Fejes Tóth on sums of moments is given: a large finite point set in a $2$-dimensional Riemannian manifold, for which a certain sum of moments is minimal, must be an
approximately regular hexagonal pattern. This result is then applied to show the following: (i) The nodes of optimal numerical integration formulae for Hoelder continuous functions on such manifolds form approximately
regular hexagonal patterns if the number of nodes is large. (ii) Given a smooth convex body in $\mathbb E^3$, most facets of the circumscribed convex polytopes of minimum volume in essence are affine regular hexagons if the number of facets is large. A similar result holds with volume replaced by mean width. (iii) A convex polytope in $\mathbb E^3$ of minimal surface area, amongst those of given volume and given number of facets, has the property that most of its facets are almost regular hexagons assuming
the number of facets is large.
Поступило в декабре 1998 г.
Образец цитирования:
R. M. Gruber, “Optimal Arrangement of Finite Point Sets in Riemannian 2-Manifolds”, Солитоны, геометрия, топология — на перекрестках, Сборник статей. К 60-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 225, Наука, МАИК «Наука/Интерпериодика», М., 1999, 160–167; Proc. Steklov Inst. Math., 225 (1999), 148–155
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm718 https://www.mathnet.ru/rus/tm/v225/p160
|
Статистика просмотров: |
Страница аннотации: | 277 | PDF полного текста: | 109 | Список литературы: | 53 | Первая страница: | 1 |
|