|
Труды Математического института имени В. А. Стеклова, 2006, том 252, страницы 150–157
(Mi tm68)
|
|
|
|
Hochschild Cohomology and Higher Order Extensions of Associative Algebras
R. T. Kurdiani A. Razmadze Mathematical Institute, Georgian Academy of Sciences
Аннотация:
The $n$th Hochschild cohomology group is described by $(n-2)$-extensions (Theorem 1). When $n=2,3$, the theorem reduces to the well-known classical results; for $n=1$, we get a description of the group of derivations by extensions; and for $n\ge 4$, this gives us a new description of cohomology groups. One can consider this theorem as an alternative definition of cohomology theory. So, one has some kind of hint to define cohomology theory for various algebraic structures.
Поступило в феврале 2005 г.
Образец цитирования:
R. T. Kurdiani, “Hochschild Cohomology and Higher Order Extensions of Associative Algebras”, Геометрическая топология, дискретная геометрия и теория множеств, Сборник статей, Труды МИАН, 252, Наука, МАИК «Наука/Интерпериодика», М., 2006, 150–157; Proc. Steklov Inst. Math., 252 (2006), 138–145
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm68 https://www.mathnet.ru/rus/tm/v252/p150
|
Статистика просмотров: |
Страница аннотации: | 221 | PDF полного текста: | 95 | Список литературы: | 41 |
|