|
Труды Математического института имени В. А. Стеклова, 2007, том 259, страницы 77–85
(Mi tm570)
|
|
|
|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups
B. A. Khesina, G. Misiołekb a Department of Mathematics, University of Toronto
b Department of Mathematics, University of Notre Dame
Аннотация:
We establish a simple relation between certain curvatures of the group of volume-preserving diffeomorphisms and the lifespan of potential solutions to the inviscid Burgers equation before the appearance of shocks. We show that shock formation corresponds to a focal point of the group of volume-preserving diffeomorphisms regarded as a submanifold of the full diffeomorphism group and, consequently, to a conjugate point along a geodesic in the Wasserstein space of densities. This relates the ideal Euler hydrodynamics (via Arnold's approach) to shock formation in the multidimensional Burgers equation and the Kantorovich–Wasserstein geometry of the space of densities.
Поступило в феврале 2007 г.
Образец цитирования:
B. A. Khesin, G. Misiołek, “Shock Waves for the Burgers Equation and Curvatures of Diffeomorphism Groups”, Анализ и особенности. Часть 2, Сборник статей. К 70-летию со дня рождения академика Владимира Игоревича Арнольда, Труды МИАН, 259, Наука, МАИК «Наука/Интерпериодика», М., 2007, 77–85; Proc. Steklov Inst. Math., 259 (2007), 73–81
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm570 https://www.mathnet.ru/rus/tm/v259/p77
|
|