Труды Математического института имени В. А. Стеклова
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Труды МИАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Математического института имени В. А. Стеклова, статья будет опубликована в одном из ближайших номеров (Mi tm4447)  

Центральные расширения алгебр Ли, динамические системы и симплектические нильмногообразия

И. А. Тайманов

Новосибирский национальный исследовательский государственный университет
Аннотация: Описаны связи уравнений Эйлера на центральных расширениях алгебр Ли с уравнениями Эйлера на исходных, расширяемых, алгебрах. Рассмотрена специальная бесконечная последовательность центральных расширений нильпотентных алгебр Ли, строящихся по алгебре Ли формальных векторных полей на прямой, и описаны орбиты коприсоединенных представлений для этих алгебр. С помощью компактных нильмногообразий, построенных по этим алгебрам И.К. Бабенко и автором, показано, что накрывающие группы Ли для симплектических нильмногообразий могут иметь любой ранг как разрешимые группы Ли.
Ключевые слова: уравнения Эйлера на алгебрах Ли, геодезические потоки, магнитные геодезические потоки, центральные расширения алгебр Ли, орбиты коприсоединённого представления нильпотентных групп Ли, симплектические нильмногообразия
Финансовая поддержка Номер гранта
Российский научный фонд 24-11-00281
Работа поддержана РНФ (проект 24-11-00281).
Поступило в редакцию: 16 июля 2024 г.
После доработки: 2 сентября 2024 г.
Принята к печати: 6 сентября 2024 г.
Тип публикации: Статья
MSC: 53D25, 17B08, 57R17
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tm4447
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Статистика просмотров:
    Страница аннотации:49
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024