Аннотация:
Рассматривается $d$-типный надкритический ветвящийся процесс $Z_n^i=(Z_n^i(1),\ldots ,Z_n^i(d))$, $n\geq 0$, начинающийся с одной частицы типа $i$, в случайной среде $\xi =(\xi _0,\xi _1,\ldots )$, порожденной последовательностью независимых одинаково распределенных случайных величин. В предыдущей работе авторов была получена теорема типа Кестена–Стигума для $Z_n^i$, утверждающая, что для произвольных $1\leq i,j\leq d$ имеет место сходимость по вероятности $Z_n^i(j)/\mathbb E_\xi Z_n^i(j) \to W^i$ при $n \to +\infty $, где $\mathbb E_\xi Z_n^i(j)$ — условное математическое ожидание величины $Z_n^i(j)$ при условии среды $\xi $, а случайная величина $W^i$ неотрицательна и конечна. В данной работе получено необходимое и достаточное условие для сходимости в $L^p$ величин $Z_n^i(j)/\mathbb E_\xi Z_n^i(j)$ и доказано, что сходимость является экспоненциальной. С этой целью сначала установлены соответствующие результаты для фундаментального мартингала $(W_n^i)$, ассоциированного с процессом $(Z_n^i)$.
Работа выполнена при финансовой поддержке Центра Анри Лебега (CHL, проект ANR-11-LABX-0020-01, Франция) и Государственного фонда естественных наук Китая (проекты 11971063, 11731012).
Поступило в редакцию:19 февраля 2021 г. После доработки:8 мая 2021 г. Принята к печати:10 ноября 2021 г.
Образец цитирования:
И. Грама, Цюаньшэн Лю, Э. Пин, “Сходимость в $L^p$ надкритического многотипного ветвящегося процесса в случайной среде”, Ветвящиеся процессы и смежные вопросы, Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина, Труды МИАН, 316, МИАН, М., 2022, 169–194; Proc. Steklov Inst. Math., 316 (2022), 160–183
\RBibitem{GraLiuPin22}
\by И.~Грама, Цюаньшэн~Лю, Э.~Пин
\paper Сходимость в $L^p$ надкритического многотипного ветвящегося процесса в случайной среде
\inbook Ветвящиеся процессы и смежные вопросы
\bookinfo Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина
\serial Труды МИАН
\yr 2022
\vol 316
\pages 169--194
\publ МИАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm4231}
\crossref{https://doi.org/10.4213/tm4231}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 160--183
\crossref{https://doi.org/10.1134/S0081543822010126}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129087355}