|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Ergodic decomposition of group actions on rooted trees
Rostislav Grigorchuka, Dmytro Savchukb a Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
b Department of Mathematics and Statistics, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620-5700, USA
Аннотация:
We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.
Поступило в редакцию: 30 декабря 2014 г.
Образец цитирования:
Rostislav Grigorchuk, Dmytro Savchuk, “Ergodic decomposition of group actions on rooted trees”, Алгебра, геометрия и теория чисел, Сборник статей. К 75-летию со дня рождения академика Владимира Петровича Платонова, Труды МИАН, 292, МАИК «Наука/Интерпериодика», М., 2016, 100–117; Proc. Steklov Inst. Math., 292 (2016), 94–111
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3685https://doi.org/10.1134/S0371968516010064 https://www.mathnet.ru/rus/tm/v292/p100
|
Статистика просмотров: |
Страница аннотации: | 293 | PDF полного текста: | 57 | Список литературы: | 67 | Первая страница: | 3 |
|