|
Труды Математического института имени В. А. Стеклова, 2002, том 239, страницы 118–126
(Mi tm363)
|
|
|
|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
L. Danzer Technischen Universität Dortmund
Аннотация:
Let $\mathbf S$ be an inflation species in $\mathbb E^2$ with an inflation factor $\eta$. The following cases are possible: (1) $\mathbf S$ is face-to-face. Then, trivially, there are only finitely many clusters in $\mathbf S$ that fit into a circle of radius $R$, where $R$ is the maximum of the diameters of the prototiles. This property is called locally finite complexity (LFC).
If a species is repetitive, it is necessarily in (LFC). (2) $\mathbf S$ is not face-to-face, but $\eta$ is a PV-number. The only class of examples of this type known to the author was published by R. Kenyon in 1992. (3) $\mathbf S$ is not face-to-face and $\eta$ is not a PV-number. For this case, a criterion will be presented that says the following: If, after a finite number of steps, a certain inequality issatisfied, then $\mathbf S$ is not in (LFC) (and, hence, cannot be repetitive). It seems that this is a generic subcase of case (3). In other
words, in case (3) (LFC)-species are very rare. No inflation species is known that is not face-to-face with inflation factor $\eta$ not being a PV-number but which is nevertheless in (LFC).
Поступило в ноябре 2001 г.
Образец цитирования:
L. Danzer, “Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity”, Дискретная геометрия и геометрия чисел, Сборник статей. К 70-летию со дня рождения профессора Сергея Сергеевича Рышкова, Труды МИАН, 239, Наука, МАИК «Наука/Интерпериодика», М., 2002, 118–126; Proc. Steklov Inst. Math., 239 (2002), 108–116
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm363 https://www.mathnet.ru/rus/tm/v239/p118
|
Статистика просмотров: |
Страница аннотации: | 293 | PDF полного текста: | 135 | Список литературы: | 48 |
|