Труды Математического института имени В. А. Стеклова
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Труды МИАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Математического института имени В. А. Стеклова, 2015, том 289, страницы 242–303
DOI: https://doi.org/10.1134/S0371968515020156
(Mi tm3617)
 

Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)

Адиабатический предел в уравнениях Гинзбурга–Ландау и Зайберга–Виттена

А. Г. Сергеев

Математический институт им. В. А. Стеклова Российской академии наук, Москва, Россия
Список литературы:
Аннотация: Гиперболические уравнения Гинзбурга–Ландау возникают в калибровочной теории поля как уравнения Эйлера–Лагранжа для $(2+1)$-мерной абелевой модели Хиггса. Пространство модулей статических решений этих уравнений, называемых вихрями, описано Таубсом, однако мало что известно о пространстве модулей динамических решений. Мэнтон предложил изучать динамические решения с малой кинетической энергией с помощью адиабатического предела, вводя на траекториях решений “медленное время”. В указанном пределе динамические решения сходятся к геодезическим на пространстве вихрей в метрике, порождаемой функционалом кинетической энергии. Тем самым исходные уравнения сводятся к уравнениям Эйлера для геодезических, решая которые удается описать поведение медленно движущихся динамических решений. Оказывается, что у этой процедуры есть $4$-мерный аналог. А именно, для уравнений Зайберга–Виттена на $4$-мерных симплектических многообразиях можно ввести аналог адиабатического предела. В указанном пределе решения уравнений Зайберга–Виттена редуцируются к семействам вихрей в нормальных плоскостях к псевдоголоморфным кривым, которые можно рассматривать как комплексные аналоги геодезических, параметризованные “комплексным временем”. Исследование адиабатического предела для уравнений, указанных в названии, и составляет основное содержание данной работы.
Финансовая поддержка Номер гранта
Российский научный фонд 14-50-00005
Исследование выполнено за счет гранта Российского научного фонда (проект № 14-50-00005).
Поступило в редакцию: 15 января 2015 г.
Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 289, Pages 227–285
DOI: https://doi.org/10.1134/S008154381504015X
Реферативные базы данных:
Тип публикации: Статья
УДК: 514.84
Образец цитирования: А. Г. Сергеев, “Адиабатический предел в уравнениях Гинзбурга–Ландау и Зайберга–Виттена”, Избранные вопросы математики и механики, Сборник статей. К 150-летию со дня рождения академика Владимира Андреевича Стеклова, Труды МИАН, 289, МАИК «Наука/Интерпериодика», М., 2015, 242–303; Proc. Steklov Inst. Math., 289 (2015), 227–285
Цитирование в формате AMSBIB
\RBibitem{Ser15}
\by А.~Г.~Сергеев
\paper Адиабатический предел в~уравнениях Гинзбурга--Ландау и Зайберга--Виттена
\inbook Избранные вопросы математики и механики
\bookinfo Сборник статей. К~150-летию со дня рождения академика Владимира Андреевича Стеклова
\serial Труды МИАН
\yr 2015
\vol 289
\pages 242--303
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3617}
\crossref{https://doi.org/10.1134/S0371968515020156}
\elib{https://elibrary.ru/item.asp?id=23738473}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 289
\pages 227--285
\crossref{https://doi.org/10.1134/S008154381504015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000358577300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938870379}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tm3617
  • https://doi.org/10.1134/S0371968515020156
  • https://www.mathnet.ru/rus/tm/v289/p242
  • Эта публикация цитируется в следующих 14 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Статистика просмотров:
    Страница аннотации:526
    PDF полного текста:118
    Список литературы:78
    Первая страница:4
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024