|
Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)
Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами
А. А. Гайфуллинabc a Московский государственный университет им. М. В. Ломоносова, Москва, Россия
b Математический институт им. В. А. Стеклова РАН, Москва, Россия
c Институт проблем передачи информации им. А. А. Харкевича РАН, Москва, Россия
Аннотация:
Построены примеры вложенных изгибаемых кросс-политопов в сферах всех размерностей. Эти примеры представляют интерес с двух точек зрения. Во-первых, в размерностях $4$ и выше это первые примеры вложенных изгибаемых многогранников. Следует отметить, что, в отличие от сфер, в евклидовых пространствах и пространствах Лобачевского размерностей $4$ и выше до сих пор не известно ни одного примера вложенного изгибаемого многогранника. Во-вторых, показано, что объемы построенных изгибаемых кросс-политопов непостоянны в процессе изгибания. Таким образом, эти кросс-политопы дают контрпримеры к гипотезе о кузнечных мехах для сферических многогранников. Ранее контрпример к этой гипотезе был построен только в размерности $3$ (В. А. Александров, 1997), и он не был вложенным. Для изгибаемых многогранников в сферах предложено ослабление гипотезы о кузнечных мехах, которое названо модифицированной гипотезой о кузнечных мехах. Показано, что эта гипотеза выполняется для всех изгибаемых кросс-политопов простейшего типа, среди которых находятся наши контрпримеры к обычной гипотезе о кузнечных мехах. Попутно получен ряд геометрических результатов об изгибаемых кросс-политопах простейшего типа, в частности, выписаны соотношения на объемы их граней коразмерностей $1$ и $2$.
Поступило в октябре 2014 г.
Образец цитирования:
А. А. Гайфуллин, “Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами”, Геометрия, топология и приложения, Сборник статей. К 70-летию со дня рождения профессора Николая Петровича Долбилина, Труды МИАН, 288, МАИК «Наука/Интерпериодика», М., 2015, 67–94; Proc. Steklov Inst. Math., 288 (2015), 56–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3598https://doi.org/10.1134/S0371968515010057 https://www.mathnet.ru/rus/tm/v288/p67
|
Статистика просмотров: |
Страница аннотации: | 469 | PDF полного текста: | 89 | Список литературы: | 63 |
|