|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Nearly optimal sequential tests of composite hypotheses revisited
Alexander G. Tartakovsky Department of Statistics, University of Connecticut, Storrs, CT 06269-4120, USA
Аннотация:
We revisit the problem of sequential testing composite hypotheses, considering multiple hypotheses and very general non-i.i.d. stochastic models. Two sequential tests are studied: the multihypothesis generalized sequential likelihood ratio test and the multihypothesis adaptive sequential likelihood ratio test with one-stage delayed estimators. While the latter loses information compared to the former, it has an advantage in designing thresholds to guarantee given upper bounds for probabilities of errors, which is practically impossible for the generalized likelihood ratio type tests. It is shown that both tests have asymptotic optimality properties minimizing the expected sample size or even more generally higher moments of the stopping time as probabilities of errors vanish. Two examples that illustrate the general theory are presented.
Поступило в апреле 2014 г.
Образец цитирования:
Alexander G. Tartakovsky, “Nearly optimal sequential tests of composite hypotheses revisited”, Стохастическое исчисление, мартингалы и их применения, Сборник статей. К 80-летию со дня рождения академика Альберта Николаевича Ширяева, Труды МИАН, 287, МАИК «Наука/Интерпериодика», М., 2014, 279–299; Proc. Steklov Inst. Math., 287:1 (2014), 268–288
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3574https://doi.org/10.1134/S0371968514040165 https://www.mathnet.ru/rus/tm/v287/p279
|
Статистика просмотров: |
Страница аннотации: | 220 | PDF полного текста: | 80 | Список литературы: | 56 |
|