|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Toric origami manifolds and multi-fans
Mikiya Masudaa, Seonjeong Parkb a Department of Mathematics, Osaka City University, Osaka, Japan
b Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon, Korea
Аннотация:
The notion of a toric origami manifold, which weakens the notion of a symplectic toric manifold, was introduced by A. Cannas da Silva, V. Guillemin and A. R. Pires. They showed that toric origami manifolds bijectively correspond to origami templates via moment maps, where an origami template is a collection of Delzant polytopes with some folding data. Like a fan is associated to a Delzant polytope, a multi-fan introduced by A. Hattori and M. Masuda can be associated to an oriented origami template. In this paper, we discuss their relationship and show that any simply connected compact smooth $4$-manifold with a smooth action of $T^2$ can be a toric origami manifold. We also characterize products of even dimensional spheres which can be toric origami manifolds.
Поступило в мае 2013 г.
Образец цитирования:
Mikiya Masuda, Seonjeong Park, “Toric origami manifolds and multi-fans”, Алгебраическая топология, выпуклые многогранники и смежные вопросы, Сборник статей. К 70-летию со дня рождения члена-корреспондента РАН Виктора Матвеевича Бухштабера, Труды МИАН, 286, МАИК «Наука/Интерпериодика», М., 2014, 331–346; Proc. Steklov Inst. Math., 286 (2014), 308–323
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3573https://doi.org/10.1134/S0371968514030182 https://www.mathnet.ru/rus/tm/v286/p331
|
Статистика просмотров: |
Страница аннотации: | 165 | PDF полного текста: | 39 | Список литературы: | 118 |
|