|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Well-posedness of parabolic equations containing hysteresis with diffusive thresholds
Pavel Gurevichab, Dmitrii Rachinskiicd a Peoples Friendship University of Russia, Moscow, Russia
b Freie Universität Berlin, Berlin, Germany
c Department of Applied Mathematics, University College Cork, Cork, Ireland
d Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
Аннотация:
We study complex systems arising, in particular, in population dynamics, developmental biology, and bacterial metabolic processes, in which each individual element obeys a relatively simple hysteresis law (a non-ideal relay). Assuming that hysteresis thresholds fluctuate, we consider the arising reaction-diffusion system. In this case, the spatial variable corresponds to the hysteresis threshold. We describe the collective behavior of such a system in terms of the Preisach operator with time-dependent measure which is a part of the solution for the whole system. We prove the well-posedness of the system and discuss the long-term behavior of solutions.
Поступило в декабре 2012 г.
Образец цитирования:
Pavel Gurevich, Dmitrii Rachinskii, “Well-posedness of parabolic equations containing hysteresis with diffusive thresholds”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Труды МИАН, 283, МАИК «Наука/Интерпериодика», М., 2013, 92–114; Proc. Steklov Inst. Math., 283 (2013), 87–109
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3507https://doi.org/10.1134/S0371968513040079 https://www.mathnet.ru/rus/tm/v283/p92
|
Статистика просмотров: |
Страница аннотации: | 417 | PDF полного текста: | 69 | Список литературы: | 75 |
|