|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Random walk in mixed random environment without uniform ellipticity
Ostap Hryniv, Mikhail V. Menshikov, Andrew R. Wade Department of Mathematical Sciences, Durham University, Durham, UK
Аннотация:
We study a random walk in random environment on $\mathbb Z_+$. The random environment is not homogeneous in law, but is a mixture of two kinds of site, one in asymptotically vanishing proportion. The two kinds of site are (i) points endowed with probabilities drawn from a symmetric distribution with heavy tails at 0 and 1, and (ii) “fast points” with a fixed systematic drift. Without these fast points, the model is related to the diffusion in heavy-tailed (“stable”) random potential studied by Schumacher and Singh; the fast points perturb that model. The two components compete to determine the behaviour of the random walk; we identify phase transitions in terms of the model parameters. We give conditions for recurrence and transience and prove almost sure bounds for the trajectories of the walk.
Поступило в феврале 2013 г.
Образец цитирования:
Ostap Hryniv, Mikhail V. Menshikov, Andrew R. Wade, “Random walk in mixed random environment without uniform ellipticity”, Ветвящиеся процессы, случайные блуждания и смежные вопросы, Сборник статей. Посвящается памяти члена-корреспондента РАН Бориса Александровича Севастьянова, Труды МИАН, 282, МАИК «Наука/Интерпериодика», М., 2013, 114–131; Proc. Steklov Inst. Math., 282 (2013), 106–123
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3478https://doi.org/10.1134/S0371968513030102 https://www.mathnet.ru/rus/tm/v282/p114
|
Статистика просмотров: |
Страница аннотации: | 196 | PDF полного текста: | 51 | Список литературы: | 43 |
|