|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Rigidity and stability of the Leibniz and the chain rule
Hermann Königa, Vitali Milmanb a Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Аннотация:
We study rigidity and stability properties of the Leibniz and chain rule operator equations. We describe which non-degenerate operators $V,T_1,T_2,A\colon C^k(\mathbb R)\to C(\mathbb R)$ satisfy equations of the generalized Leibniz and chain rule type for $f,g\in C^k(\mathbb R)$, namely, $V(f\cdot g)=(T_1f)\cdot g+f\cdot(T_2g)$ for $k=1$, $V(f\cdot g)=(T_1f)\cdot g+f\cdot(T_2g)+(Af)\cdot(Ag)$ for $k=2$, and $V(f\circ g)=(T_1f)\circ g\cdot(T_2g)$ for $k=1$. Moreover, for multiplicative maps $A$, we consider a more general version of the first equation, $V(f\cdot g)=(T_1f)\cdot(Ag)+(Af)\cdot(T_2g)$ for $k=1$. In all these cases, we completely determine all solutions. It turns out that, in any of the equations, the operators $V$, $T_1$ and $T_2$ must be essentially equal. We also consider perturbations of the chain and the Leibniz rule, $T(f\circ g)=Tf\circ g\cdot Tg+B(f\circ g,g)$ and $T(f\cdot g)=Tf\cdot g+f\cdot Tg+B(f,g)$, and show under suitable conditions on $B$ in the first case that $B=0$ and in the second case that the solution is a perturbation of the solution of the standard Leibniz rule equation.
Поступило в январе 2012 г.
Образец цитирования:
Hermann König, Vitali Milman, “Rigidity and stability of the Leibniz and the chain rule”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Труды МИАН, 280, МАИК «Наука/Интерпериодика», М., 2013, 198–214; Proc. Steklov Inst. Math., 280 (2013), 191–207
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3455https://doi.org/10.1134/S0371968513010135 https://www.mathnet.ru/rus/tm/v280/p198
|
|