|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Greedy expansions in Hilbert spaces
J. L. Nelsona, V. N. Temlyakovab a Mathematics Department, University of South Carolina, Columbia, SC, USA
b Steklov Mathematical Institute, Moscow, Russia
Аннотация:
We study the rate of convergence of expansions of elements in a Hilbert space $H$ into series with regard to a given dictionary $\mathcal D$. The primary goal of this paper is to study representations of an element $f\in H$ by a series $f\sim\sum_{j=1}^\infty c_j(f)g_j(f)$, $g_j(f)\in\mathcal D$. Such a representation involves two sequences: $\{g_j(f)\}_{j=1}^\infty$ and $\{c_j(f)\}_{j=1}^\infty$. In this paper the construction of $\{g_j(f)\}_{j=1}^\infty$ is based on ideas used in greedy-type nonlinear approximation, hence the use of the term greedy expansion. An interesting open problem questions, "What is the best possible rate of convergence of greedy expansions for $f\in A_1(\mathcal D)$?" Previously it was believed that the rate of convergence was slower than $m^{-\frac14}$. The qualitative result of this paper is that the best possible rate of convergence of greedy expansions for $f\in A_1(\mathcal D)$ is faster than $m^{-\frac14}$. In fact, we prove it is faster than $m^{-\frac27}$.
Поступило в январе 2012 г.
Образец цитирования:
J. L. Nelson, V. N. Temlyakov, “Greedy expansions in Hilbert spaces”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Труды МИАН, 280, МАИК «Наука/Интерпериодика», М., 2013, 234–246; Proc. Steklov Inst. Math., 280 (2013), 227–239
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3444https://doi.org/10.1134/S0371968513010160 https://www.mathnet.ru/rus/tm/v280/p234
|
Статистика просмотров: |
Страница аннотации: | 225 | PDF полного текста: | 62 | Список литературы: | 61 |
|