|
Труды Математического института имени В. А. Стеклова, 2002, том 237, страницы 256–264
(Mi tm337)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Perpetual Options for Lévy Processes in the Bachelier Model
É. Mordecki Facultad de Ciencias, Centro de Matemática
Аннотация:
A solution to the optimal stopping problem
$V(x)=\sup_\tau\mathsf Ee^{-\delta\tau}g(x+X_\tau)$ is
given, where $X=\{X_t\}_{t\ge 0}$ is a Lévy process, $\tau$ is an
arbitrary stopping time, $\delta\ge 0$ is a discount rate, and the reward
function $g$ takes the form $g_c(x)=(x-K)^+$ or $g_p(x)=(K-x)^+$. The
results interpreted as option prices of perpetual options in Bachelier's
model are expressed in terms of the distribution of the overall supremum in
the case $g=g_c$ and overall infimum in the case $g=g_p$ of the process $X$
killed at rate $\delta$. Closed-form solutions are obtained under mixed
exponentially distributed positive jumps with arbitrary negative jumps for
$g_c$ and under arbitrary positive jumps and mixed exponentially
distributed negative jumps for $g_p$. In the case $g=g_c$, a prophet
inequality comparing the prices of perpetual look-back call options and
perpetual call options is obtained.
Поступило в ноябре 2001 г.
Образец цитирования:
É. Mordecki, “Perpetual Options for Lévy Processes in the Bachelier Model”, Стохастическая финансовая математика, Сборник статей, Труды МИАН, 237, Наука, МАИК «Наука/Интерпериодика», М., 2002, 256–264; Proc. Steklov Inst. Math., 237 (2002), 247–255
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm337 https://www.mathnet.ru/rus/tm/v237/p256
|
|