|
Труды Математического института имени В. А. Стеклова, 2012, том 276, страницы 198–212
(Mi tm3366)
|
|
|
|
Diophantine approximation generalized
Ladislav Mišíka, Oto Strauchb a Department of Mathematics, University of Ostrava, Ostrava, Czech Republic
b Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
Аннотация:
In this paper we study the set of $x\in[0,1]$ for which the inequality $|x-x_n|<z_n$ holds for infinitely many $n=1,2,\dots$. Here $x_n\in[0,1)$ and $z_n>0$, $z_n\to0$, are sequences. In the first part of the paper we summarize known results. In the second part, using the theory of distribution functions of sequences, we find the asymptotic density of $n$ for which $|x-x_n|<z_n$, where $x$ is a discontinuity point of some distribution function of $x_n$. Generally, we also prove, for an arbitrary sequence $x_n$, that there exists $z_n$ such that the density of $n=1,2,\dots$, $x_n\to x$, is the same as the density of $n=1,2,\dots$, $|x-x_n|<z_n$, for $x\in[0,1]$. Finally we prove, using the longest gap $d_n$ in the finite sequence $x_1,x_2,\dots,x_n$, that if $d_n\le z_n$ for all $n$, $z_n\to0$, and $z_n$ is non-increasing, then $|x-x_n|<z_n$ holds for infinitely many $n$ and for almost all $x\in[0,1]$.
Поступило в августе 2011 г.
Образец цитирования:
Ladislav Mišík, Oto Strauch, “Diophantine approximation generalized”, Теория чисел, алгебра и анализ, Сборник статей. К 75-летию со дня рождения профессора Анатолия Алексеевича Карацубы, Труды МИАН, 276, МАИК «Наука/Интерпериодика», М., 2012, 198–212; Proc. Steklov Inst. Math., 276 (2012), 193–207
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3366 https://www.mathnet.ru/rus/tm/v276/p198
|
Статистика просмотров: |
Страница аннотации: | 181 | PDF полного текста: | 57 | Список литературы: | 36 |
|