|
Труды Математического института имени В. А. Стеклова, 2002, том 236, страницы 491–502
(Mi tm318)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Discrete Models of Codimension-Two Singularities of Goursat Flags
of Arbitrary Length with One Flag's Member in Singular Position
P. Mormul Institute of Mathematics, Warsaw University
Аннотация:
Generic germs of Goursat distributions (special subbundles in tangent
bundles having the flag of consecutive Lie squares of ranks
growing always by 1) were classified a century ago by von Weber; his
discrete models are the chained systems that are well known in control
theory. Germs of codimension 1, for Goursat distributions of all coranks,
were classified by us in 1999. These singularities are simple as well.
Singularities of codimension 2 of Goursat flags of arbitrary corank split
into two geometrically distinct classes. In this paper we
show that one of these classes consists of simple germs, and give a list of
discrete models for them. This is in contrast with the fact that in the
second class there do exist singularities of modality at least two.
Поступило в июне 2001 г.
Образец цитирования:
P. Mormul, “Discrete Models of Codimension-Two Singularities of Goursat Flags
of Arbitrary Length with One Flag's Member in Singular Position”, Дифференциальные уравнения и динамические системы, Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Труды МИАН, 236, Наука, МАИК «Наука/Интерпериодика», М., 2002, 491–502; Proc. Steklov Inst. Math., 236 (2002), 478–489
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm318 https://www.mathnet.ru/rus/tm/v236/p491
|
Статистика просмотров: |
Страница аннотации: | 234 | PDF полного текста: | 90 | Список литературы: | 45 |
|