|
Труды Математического института имени В. А. Стеклова, 2010, том 270, страницы 49–61
(Mi tm3008)
|
|
|
|
Эта публикация цитируется в 24 научных статьях (всего в 24 статьях)
Existence of planar curves minimizing length and curvature
Ugo Boscainab, Grégoire Charlotc, Francesco Rossib a CNRS CMAP, Ècole Polytechnique, Palaiseau Cedex, France
b SISSA, Trieste, Italy
c Institut Fourier, UMR5582, St. Martin d'Hères cedex, France
Аннотация:
We consider the problem of reconstructing a curve that is partially hidden or corrupted by minimizing the functional $\int\sqrt{1+K_\gamma^2}\,ds$, depending both on the length and curvature $K$. We fix starting and ending points as well as initial and final directions. For this functional we discuss the problem of existence of minimizers on various functional spaces. We find nonexistence of minimizers in cases in which initial and final directions are considered with orientation. In this case, minimizing sequences of trajectories may converge to curves with angles. We instead prove the existence of minimizers for the “time-reparametrized” functional $\int\|\dot\gamma(t)\|\sqrt{1+K_\gamma^2}\,dt$ for all boundary conditions if the initial and final directions are considered regardless of orientation. In this case, minimizers may present cusps (at most two) but not angles.
Поступило в апреле 2009 г.
Образец цитирования:
Ugo Boscain, Grégoire Charlot, Francesco Rossi, “Existence of planar curves minimizing length and curvature”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 270, МАИК «Наука/Интерпериодика», М., 2010, 49–61; Proc. Steklov Inst. Math., 270 (2010), 43–56
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3008 https://www.mathnet.ru/rus/tm/v270/p49
|
Статистика просмотров: |
Страница аннотации: | 221 | PDF полного текста: | 57 | Список литературы: | 50 |
|