|
Труды Математического института имени В. А. Стеклова, 2009, том 267, страницы 82–96
(Mi tm2596)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Conservative Homoclinic Bifurcations and Some Applications
A. Gorodetskia, V. Kaloshinb a Department of Mathematics, University of California, Irvine, CA, USA
b Department of Mathematics, Penn State University, State College, PA, USA
Аннотация:
We study generic unfoldings of homoclinic tangencies of two-dimensional area-preserving diffeomorphisms (conservative Newhouse phenomena) and show that they give rise to invariant hyperbolic sets of arbitrarily large Hausdorff dimension. As applications, we discuss the size of the stochastic layer of a standard map and the Hausdorff dimension of invariant hyperbolic sets for certain restricted three-body problems. We avoid involved technical details and only concentrate on the ideas of the proof of the presented results.
Поступило в апреле 2009 г.
Образец цитирования:
A. Gorodetski, V. Kaloshin, “Conservative Homoclinic Bifurcations and Some Applications”, Особенности и приложения, Сборник статей, Труды МИАН, 267, МАИК «Наука/Интерпериодика», М., 2009, 82–96; Proc. Steklov Inst. Math., 267 (2009), 76–90
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm2596 https://www.mathnet.ru/rus/tm/v267/p82
|
|