Труды Математического института имени В. А. Стеклова
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Труды МИАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Математического института имени В. А. Стеклова, 2005, том 248, страницы 237–249 (Mi tm134)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Об одном экстремальном свойстве полиномов Чебышева

В. Д. Степанов

Хабаровское отделение Института прикладной математики Дальневосточного Отделения РАН
Список литературы:
Аннотация: Для любого натурального числа $k\ge 1$ в метрике весовых классов $L^2(\omega )$ получены точные двусторонние неравенства вида $\gamma _k\bigl |\int G^{(k)}(x)\nu _k(x)\,dx\bigr |^2\le \bigl [\mathrm {dist}_{L^2(\omega )} (G,{\mathcal P}_{k-1})\bigr ]^2\le \gamma _k\int \bigl |G^{(k)}(x)\bigr |^2\nu _k(x)\,dx$ для расстояния от элемента $G$ до подпространства ${\mathcal P}_{k-1}$ всех полиномов степени $\le k-1$, обращающиеся в равенства на полиномах типа Чебышева степени $k$. На действительной оси при $\omega (x)=\nu _k(x)= \frac {1}{\sqrt {2\pi }}\,e^{-x^2/2}$, $\gamma _k=1/k!$ мы получаем точное обобщение неравенства Чернова ($k=1$) на произвольные значения $k\ge 1$.
Поступило в сентябре 2004 г.
Реферативные базы данных:
УДК: 517.51
Образец цитирования: В. Д. Степанов, “Об одном экстремальном свойстве полиномов Чебышева”, Исследования по теории функций и дифференциальным уравнениям, Сборник статей. К 100-летию со дня рождения академика Сергея Михайловича Никольского, Труды МИАН, 248, Наука, МАИК «Наука/Интерпериодика», М., 2005, 237–249; Proc. Steklov Inst. Math., 248 (2005), 230–242
Цитирование в формате AMSBIB
\RBibitem{Ste05}
\by В.~Д.~Степанов
\paper Об одном экстремальном свойстве полиномов Чебышева
\inbook Исследования по теории функций и дифференциальным уравнениям
\bookinfo Сборник статей. К 100-летию со дня рождения академика Сергея Михайловича Никольского
\serial Труды МИАН
\yr 2005
\vol 248
\pages 237--249
\publ Наука, МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2165931}
\zmath{https://zbmath.org/?q=an:1125.41306}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 248
\pages 230--242
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tm134
  • https://www.mathnet.ru/rus/tm/v248/p237
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Статистика просмотров:
    Страница аннотации:409
    PDF полного текста:128
    Список литературы:67
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024