|
Труды Института математики и механики УрО РАН, 2010, том 16, номер 5, страницы 308–315
(Mi timm634)
|
|
|
|
Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques
V. L. Turova Technische Universität München, Germany
Аннотация:
The paper describes mathematical models of the osmotic shrinkage and swelling of living cells during freezing and thawing. The cell shape is searched as the level set of a function which satisfies a Hamilton–Jacobi equation resulting from a Stefan-type condition for the normal velocity of the cell boundary. The Hamilton–Jacobi equation is then solved numerically in two and three dimensions using a monotony preserving finite-difference scheme. A generalized variant of the Stefan condition accounting for tension effects in the cell membrane is also considered, and the corresponding cell shape evolution is computed in two dimensions using a reachable set technique arising from conflict control approach.
Ключевые слова:
сryopreservation of cells, osmotic effect, mathematical model, Hamilton–Jacobi equations, finite-difference scheme, reachable set.
Поступила в редакцию: 12.02.2010
Образец цитирования:
V. L. Turova, “Modeling osmotic de- and rehydration of living cells using Hamilton–Jacobi eqytions and reachable set techniques”, Тр. ИММ УрО РАН, 16, no. 5, 2010, 308–315
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm634 https://www.mathnet.ru/rus/timm/v16/i5/p308
|
Статистика просмотров: |
Страница аннотации: | 175 | PDF полного текста: | 66 | Список литературы: | 47 | Первая страница: | 6 |
|