|
Труды Института математики и механики УрО РАН, 2010, том 16, номер 5, страницы 233–240
(Mi timm626)
|
|
|
|
Control design in cryopreservation of living cells
N. D. Botkin, K.-H. Hoffmann Tech. Universität München, Zentrum Mathematik
Аннотация:
A mathematical model of ice formation in living cells during freezing is considered. Application of an appropriate averaging technique to partial differential equations describing the dynamics of water-ice phase transitions reduces spatially distributed relations to a few ordinary differential equations with control parameters and uncertainties. Such equations together with an objective functional that expresses the difference between the amount of ice inside and outside of a cell are considered as a differential game where the aim of the control is to minimize the objective functional, and the aim of the disturbance is opposite. A stable finite-difference scheme for computing the value function is presented. Based on the computed value function, optimal controls are designed to produce cooling protocols ensuring simultaneous freezing of water inside and outside of living cells. Such a regime provides balancing the pressures inside and outside of cells, which prevents cells from injuring.
Ключевые слова:
cryopreservation, cooling rate, optimal control, differential game, value function, finite-difference scheme.
Поступила в редакцию: 10.02.2010
Образец цитирования:
N. D. Botkin, K.-H. Hoffmann, “Control design in cryopreservation of living cells”, Тр. ИММ УрО РАН, 16, no. 5, 2010, 233–240
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm626 https://www.mathnet.ru/rus/timm/v16/i5/p233
|
Статистика просмотров: |
Страница аннотации: | 216 | PDF полного текста: | 84 | Список литературы: | 50 | Первая страница: | 1 |
|