|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Алгоритм приведения двудольного графа к двудольно-пороговому виду
В. А. Баранский, Т. А. Сеньчонок Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
Аннотация:
Тройка $(x, v, y)$ различных вершин графа $G = (V, E)$ такая, что $xv\in E$ и $vy\notin E$, называется повышающей, если $\mathrm{deg}(x) \leq \mathrm{deg}(y)$, и понижающей, если $\mathrm{deg}(x) \geq 2 + \mathrm{deg}(y)$. Преобразование $\phi$ графа $G$ такое, что $\phi(G) = G - xv + vy$, называется вращением ребра в графе $G$ вокруг вершины $v$, отвечающим тройке $(x, v, y)$.
Вращение ребра в графе $G$, отвечающее тройке $(x, v, y)$, называется повышающим, если тройка $(x, v, y)$ повышающая, и понижающим, если тройка $(x, v, y)$ понижающая. Вращение $\phi$ ребра в графе $G$ является повышающим тогда и только тогда, когда обратное к нему вращение ребра в графе $\phi(G)$ является понижающим.
Двудольный граф $H = (V_1, E, V_2)$ будем называть двудольно-пороговым графом, если он не имеет повышающих троек таких, что $x, y \in V_1$, $v \in V_2$ или $x, y \in V_2$, $v \in V_1$. Вращение ребра, отвечающее тройке вершин $(x, v, y)$, такое, что $x, y \in V_1$ и $v \in V_2$ ($x, y \in V_2$ и $v \in V_1$), будем называть $V_1$-вращением ($V_2$-вращением) ребра. Любой двудольный граф $H = (V_1, E, V_2)$ можно преобразовать в двудольно-пороговый граф с помощью конечной последовательности $V_1$-вращений ($V_2$-вращений) ребер.
Целью работы является построение полиномиального алгоритма, который преобразует любой двудольный граф $H = (V_1, E, V_2)$ в двудольно-пороговый граф с помощью кратчайшей последовательности, состоящей из $V_1$-вращений ребер.
Ключевые слова:
алгоритм, разбиение целого числа, пороговый граф, двудольный граф, двудольно-пороговый граф, диаграмма Ферре.
Поступила в редакцию: 15.08.2022 Исправленный вариант: 15.09.2022 Принята в печать: 26.09.2022
Образец цитирования:
В. А. Баранский, Т. А. Сеньчонок, “Алгоритм приведения двудольного графа к двудольно-пороговому виду”, Тр. ИММ УрО РАН, 28, № 4, 2022, 54–63
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm1949 https://www.mathnet.ru/rus/timm/v28/i4/p54
|
Статистика просмотров: |
Страница аннотации: | 83 | PDF полного текста: | 31 | Список литературы: | 28 |
|