|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Принцип максимума для задачи оптимального управления с асимптотическим концевым ограничением
С. М. Асеевabc a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Московский государственный университет имени М. В. Ломоносова
c Международный институт прикладного системного анализа, Лаксенбург
Аннотация:
При выполнении условий, характеризующих доминирование дисконтирующего множителя, получен полный вариант принципа максимума Понтрягина для задачи оптимального управления на бесконечном интервале времени со специальным асимптотическим концевым ограничением. Задачи такого типа возникают в математической экономике при исследовании моделей роста.
Ключевые слова:
оптимальное управление, бесконечный горизонт, принцип максимума Понтрягина, асимптотическое концевое ограничение, модели роста, устойчивое развитие.
Поступила в редакцию: 01.02.2021 Исправленный вариант: 15.02.2021 Принята в печать: 22.02.2021
Образец цитирования:
С. М. Асеев, “Принцип максимума для задачи оптимального управления с асимптотическим концевым ограничением”, Тр. ИММ УрО РАН, 27, № 2, 2021, 35–48; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S42–S54
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm1812 https://www.mathnet.ru/rus/timm/v27/i2/p35
|
Статистика просмотров: |
Страница аннотации: | 265 | PDF полного текста: | 60 | Список литературы: | 45 | Первая страница: | 19 |
|