Труды Института математики и механики УрО РАН
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ИММ УрО РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Института математики и механики УрО РАН, 2019, том 25, номер 4, страницы 129–135
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-129-135
(Mi timm1677)
 

Неравенство Бернштейна - Сеге в пространстве $L_0$ для тригонометрических полиномов

А. О. Леонтьеваab

a Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
b Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
Список литературы:
Аннотация: Неравенства вида $\|f_n^{(\alpha)}\cos\theta+\tilde{f}_n^{(\alpha)}\sin\theta\|_p\le B_n(\alpha,\theta)_p \|f_n\|_p$ для классических производных при $\alpha\in\mathbb{N}$ и производных Вейля вещественного порядка $\alpha\ge 0$ тригонометрических полиномов $f_n$ порядка $n\ge 1$ и их сопряженных при вещественном $\theta$ и $0\le p\le \infty$ называют неравенствами Бернштейна — Сеге. Они являются обобщением классического неравенства Бернштейна ($\alpha=1$, $\theta=0$, $p=\infty$). Такие неравенства изучаются уже более 90 лет. Задача исследования неравенства Бернштейна — Сеге состоит в изучении свойств наилучшей (наименьшей) константы $B_n(\alpha,\theta)_p,$ ее точного значения и экстремальных полиномов, на которых это неравенство обращается в равенство. Г. Сеге (1928), А. Зигмунд (1933), А. И. Козко (1998) показали, что в случае $p\ge 1$ для вещественных $\alpha\ge 1$ и любых вещественных $\theta$ для наилучшей константы выполняется равенство $B_n(\alpha,\theta)_p=n^\alpha.$ Представляют интерес неравенства Бернштейна — Сеге при $p=0$ как минимум по той причине, что среди всех $0\le p\le\infty$ константа $B_n(\alpha,\theta)_p$ является наибольшей по $p$ при $p=0$. В 1981 г. В. В. Арестов доказал, что при $r\in\mathbb{N}$ и $\theta=0$ в пространствах $L_p,\,0\le p<1,$ неравенство Бернштейна выполняется с константой $n^r$, т. е. $B_n(r,0)_p=n^r$. В 1994 г. он доказал, что при $p=0$ для производной сопряженного полинома порядка $r\in\mathbb{N}\cup\{0 \}$, т. е. при $\theta=\pi/2$, точная константа имеет показательный рост по $n$, а точнее, справедливо соотношение $B_n(r,\pi/2)_0=4^{n+o(n)}$. В двух недавних работах автора (2018) получен подобный результат для производных Вейля положительного нецелого порядка при любом вещественном $\theta$. В данной работе доказано, что формула $B_n(\alpha,\theta)_0=4^{n+o(n)}$ имеет место и для производных неотрицательных целых порядков $\alpha$ и произвольных вещественных $\theta\neq \pi k,\,k\in\mathbb{Z}$.
Ключевые слова: тригонометрический полином, сопряженный полином, производная Вейля, неравенство Бернштейна — Сеге, пространство $L_0$.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-01-00336
Министерство образования и науки Российской Федерации 02.A03.21.0006
Работа выполнена при поддержке РФФИ (проект 18-01-00336) и Программы повышения конкурентоспособности УрФУ (постановление № 211 Правительства РФ от 16.03.2013, контракт № 02.A03.21.0006 от 27.08.2013).
Поступила в редакцию: 06.08.2019
Исправленный вариант: 21.10.2019
Принята в печать: 28.10.2019
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.518.86
MSC: 42A05, 41A17, 26A33
Образец цитирования: А. О. Леонтьева, “Неравенство Бернштейна - Сеге в пространстве $L_0$ для тригонометрических полиномов”, Тр. ИММ УрО РАН, 25, № 4, 2019, 129–135
Цитирование в формате AMSBIB
\RBibitem{Leo19}
\by А.~О.~Леонтьева
\paper Неравенство Бернштейна - Сеге в пространстве $L_0$ для тригонометрических полиномов
\serial Тр. ИММ УрО РАН
\yr 2019
\vol 25
\issue 4
\pages 129--135
\mathnet{http://mi.mathnet.ru/timm1677}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-129-135}
\elib{https://elibrary.ru/item.asp?id=41455528}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/timm1677
  • https://www.mathnet.ru/rus/timm/v25/i4/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики и механики УрО РАН
    Статистика просмотров:
    Страница аннотации:281
    PDF полного текста:68
    Список литературы:39
    Первая страница:3
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024