|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
О примитивных группах подстановок со стабилизатором двух точек, нормальным в стабилизаторе одной из них: случай, когда цоколь есть степень группы $E_8(q)$
А. В. Коныгин Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
Аннотация:
Пусть $G$ - примитивная группа подстановок на конечном множестве $X$, $x \in X$, $y \in X \setminus \{x\}$ и $G_{x, y}~\trianglelefteq~G_x$. П. Камероном был поставлен вопрос о справедливости в этом случае равенства $G_{x, y} = 1$. Ранее автором было доказано, что если цоколь группы $G$ не является степенью группы, изоморфной $E_8(q)$, $q$ - степень простого числа, то $G_{x, y} = 1$. В настоящей работе рассматривается случай, когда цоколь группы $G$ является степенью группы, изоморфной $E_8(q)$. Вместе с предыдущим результатом мы получаем два следующих утверждения: 1. Пусть $G$ - почти простая примитивная группа подстановок на конечном множестве $X$. Предположим, что в случае, если цоколь $G$ изоморфен $E_8(q)$, то $G_x$ для $x \in X$ не является подгруппой Боровика в группе $G$. Тогда для таких примитивных групп подстановок $G$ ответ на вопрос П. Камерона положителен. 2. Пусть $G$ - примитивная группа подстановок на конечном множестве $X$ со свойством $G \leq H \mathrm{ wr } S_m$. Предположим, что в случае, если цоколь группы $H$ изоморфен $E_8(q)$, то стабилизатор точки в группе $H$ не является подгруппой Боровика в группе $H$. Тогда для таких примитивных групп подстановок $G$ ответ на вопрос П. Камерона также положителен.
Ключевые слова:
примитивная группа подстановок, регулярная подорбита.
Поступила в редакцию: 19.09.2019 Исправленный вариант: 18.11.2019 Принята в печать: 25.11.2019
Образец цитирования:
А. В. Коныгин, “О примитивных группах подстановок со стабилизатором двух точек, нормальным в стабилизаторе одной из них: случай, когда цоколь есть степень группы $E_8(q)$”, Тр. ИММ УрО РАН, 25, № 4, 2019, 88–98
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm1673 https://www.mathnet.ru/rus/timm/v25/i4/p88
|
Статистика просмотров: |
Страница аннотации: | 169 | PDF полного текста: | 43 | Список литературы: | 35 | Первая страница: | 2 |
|