|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
К вопросу о глобальной локализации линий разрыва функции двух переменных
А. Л. Агеевab, Т. В. Антоноваa a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
Аннотация:
Рассматривается некорректно поставленная задача локализации (определения положения) линий разрыва функции двух переменных. Вне линий разрыва функция двух переменных гладкая, а в каждой точке на линии имеет разрыв первого рода. Для равномерной сетки с шагом $\tau$ предполагается, что в каждом узле известны средние значения на квадрате со стороной $\tau$ от возмущенной функции. Возмущенная функция приближает точную функцию в пространстве $L_2(\mathbb{R}^2).$ Уровень возмущения $\delta$ известен. Для решения рассматриваемой задачи на основе процедур усреднения конструируются и исследуются глобальные дискретные алгоритмы аппроксимации множества линий разрыва множеством точек равномерной сетки. Основным результатом работы является формирование подхода к проблеме глобального изучения алгоритмов локализации. Для этого формулируются условия на точную функцию (класс корректности), проводится теоретическое изучение построенных алгоритмов на данном классе, вводятся характеристики алгоритмов, которые необходимо оценивать (понятие аппроксимации множества линий разрыва множеством точек равномерной сетки), и разрабатываются методы получения оценок. Для достижения поставленной цели используется упрощенная постановка: линии разрыва являются отрезками и предлагаемый алгоритм локализации имеет простейший блок прореживания. Устанавливается, что предложенный алгоритм позволяет получить точность локализации порядка $O(\delta).$ Также приводятся оценки других важных параметров, характеризующих работу алгоритма локализации.
Ключевые слова:
некорректная задача, метод регуляризации, линии разрыва, глобальная локализация, дискретизация, порог разделимости.
Поступила в редакцию: 22.12.2017
Образец цитирования:
А. Л. Агеев, Т. В. Антонова, “К вопросу о глобальной локализации линий разрыва функции двух переменных”, Тр. ИММ УрО РАН, 24, № 2, 2018, 12–23; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S1–S12
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timm1518 https://www.mathnet.ru/rus/timm/v24/i2/p12
|
Статистика просмотров: |
Страница аннотации: | 279 | PDF полного текста: | 55 | Список литературы: | 53 | Первая страница: | 5 |
|