Труды Института математики и механики УрО РАН
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Тр. ИММ УрО РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Института математики и механики УрО РАН, 2007, том 13, номер 4, страницы 119–128 (Mi timm123)  

Граничные наклоны в трехмерных многообразиях

Е. А. Сбродова
Список литературы:
Аннотация: Напомним, что род $q(F)$ компактной поверхности $F$ c краем вычисляется по формуле $q(F)=1-\frac{\chi(F)+k}2$, где $\chi(F)$ – эйлерова характеристика поверхности $F$ и $k$ – число компонент ее края. В работе доказывается существование алгоритма, который по данному трехмерному многообразию $M$ и данному числу $N$ выясняет, содержит ли $M$ собственную существенную инъективную поверхность рода$\le N$. Для случая $N=0$, когда искомые поверхности являются плоскими, аналогичные алгоритмы были известны ранее [1,2].
Поступила в редакцию: 19.03.2007
Реферативные базы данных:
Тип публикации: Статья
УДК: 515.16
Образец цитирования: Е. А. Сбродова, “Граничные наклоны в трехмерных многообразиях”, Тр. ИММ УрО РАН, 13, № 4, 2007, 119–128
Цитирование в формате AMSBIB
\RBibitem{Sbr07}
\by Е.~А.~Сбродова
\paper Граничные наклоны в~трехмерных многообразиях
\serial Тр. ИММ УрО РАН
\yr 2007
\vol 13
\issue 4
\pages 119--128
\mathnet{http://mi.mathnet.ru/timm123}
\elib{https://elibrary.ru/item.asp?id=12040802}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/timm123
  • https://www.mathnet.ru/rus/timm/v13/i4/p119
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики и механики УрО РАН
    Статистика просмотров:
    Страница аннотации:245
    PDF полного текста:62
    Список литературы:50
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024