|
Труды Института математики, 2022, том 30, номер 1-2, страницы 117–129
(Mi timb338)
|
|
|
|
On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic
T. S. Busel, I. D. Suprunenko Institute of Mathematics, National Academy of Sciences of Belarus
Аннотация:
In the paper we considered some results on determining the Jordan block sizes (disregarding their multiplicities) for the images of unipotent elements from subsystem subgroups of small ranks in modular irreducible representations of the classical algebraic groups. The principal attention is given to regular unipotent elements from subsystem subgroups of type $A_3$ and $A_5$ or $C_2$ and $C_3$ in representations of groups of types $A_n$ or $C_n$, respectively. For $p$-restricted irreducible representations, it is proved that the images of such elements have Jordan blocks of all a priori possible sizes if some sequences of consecutive coefficients of the highest weight satisfy certain special conditions.
Образец цитирования:
T. S. Busel, I. D. Suprunenko, “On the behaviour of unipotent elements from subsystem subgroups of small ranks in irreducible representations of the classical algebraic groups in positive characteristic”, Тр. Ин-та матем., 30:1-2 (2022), 117–129
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/timb338 https://www.mathnet.ru/rus/timb/v30/i1/p117
|
Статистика просмотров: |
Страница аннотации: | 105 | PDF полного текста: | 43 | Список литературы: | 22 |
|