|
Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes
Andrii B. Ilienkoa, Josef G. Steinebachb a Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Prospekt Peremogy 37, 03056 Kiev, Ukraine
b Mathematical Institute of the University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
Аннотация:
Let $\theta$ be a short memory shot noise process. For wide classes of “stochastically Lipschitzian” (SL) and “stochastically locally Lipschitzian” (SLL) non-linear functions $K\colon{\mathbb R}\to{\mathbb R}$, we prove asymptotic normality of the normalized integrals $\Theta_K(T)=\int_0^TK(\theta(t))\,dt$ as $T\to\infty$. We also consider various examples of SL and SLL functions.
Ключевые слова:
Shot noise process, non-linear function, integrated process, central limit theorem.
Образец цитирования:
Andrii B. Ilienko, Josef G. Steinebach, “Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes”, Theory Stoch. Process., 17(33):2 (2011), 25–34
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp50 https://www.mathnet.ru/rus/thsp/v17/i2/p25
|
|