|
Zeta function regularized Laplacian on the smooth Wasserstein space above the unit circle
Christian Selinger Université du Luxembourg, Unité de Recherche en Mathématiques, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Grand-Duchy of Luxembourg
Аннотация:
Via elements of second order differential geometry on smooth Wasserstein spaces of probability measures we give an explicit formula for a Laplacian in the case that the Wasserstein space is based on the unit circle. The Laplacian on this infinite dimensional manifold is calculated as trace of the Hessian in the sense of Zeta function regularization. Its square field operator is the square norm of the Wasserstein gradient.
Ключевые слова:
Wasserstein distance, smooth Wasserstein space, smooth Lie bracket, optimal transport, entropy, Riemann zeta-function.
Образец цитирования:
Christian Selinger, “Zeta function regularized Laplacian on the smooth Wasserstein space above the unit circle”, Theory Stoch. Process., 17(33):1 (2011), 109–118
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp46 https://www.mathnet.ru/rus/thsp/v17/i1/p109
|
Статистика просмотров: |
Страница аннотации: | 257 | PDF полного текста: | 75 | Список литературы: | 42 |
|