|
On number of particles in coalescing-fragmentating Wasserstein dynamics
Vitalii V. Konarovskyiabc a Faculty of Mathematics, Computer Science and Natural Sciences, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
b Institute of Mathematics, University of Leipzig,
Augustusplatz 10, 04109 Leipzig, Germany
c Institute of Mathematics of NAS of Ukraine,
Tereschenkivska st. 3, 01024 Kiev, Ukraine
Аннотация:
We consider the system of sticky-reflected Brownian particles on the real line proposed in [4]. The model is a modification of the Howitt-Warren flow but now the diffusion rate of particles is inversely proportional to the mass which they transfer. It is known that the system consists of a finite number of distinct particles for almost all times. In this paper, we show that the system also admits an infinite number of distinct particles on a dense subset of the time interval if and only if the function responsible for the splitting of particles takes an infinite number of values.
Ключевые слова:
Sticky-reflected particle system, modified massive Arratia flow, infinite dimensional singular SDE.
Образец цитирования:
Vitalii V. Konarovskyi, “On number of particles in coalescing-fragmentating Wasserstein dynamics”, Theory Stoch. Process., 25(41):2 (2020), 74–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp319 https://www.mathnet.ru/rus/thsp/v25/i2/p74
|
Статистика просмотров: |
Страница аннотации: | 137 | PDF полного текста: | 33 | Список литературы: | 35 |
|